Package ‘ClassComparison’

August 4, 2017

Version 3.1.5
Date 2017-07-11
Title Classes and Methods for "Class Comparison" Problems on Microarrays
Author Kevin R. Coombes
Maintainer Kevin R. Coombes <krc@silicovore.com>
Description Defines the classes used for "class comparison" problems in the OOMPA project (<http://oompa.r-forge.r-project.org/>). Class comparison includes tests for differential expression; see Simon’s book for details on typical problem types.
Depends R (>= 3.0), oompaBase (>= 3.0)
Imports methods, graphics, stats, splines, Biobase
License Apache License (== 2.0)
LazyLoad yes
biocViews Microarray, DifferentialExpression, MultipleComparisons
URL http://oompa.r-forge.r-project.org/
NeedsCompilation no

R topics documented:

Bum-class .. 2
BumSummary-class .. 5
Dudoit-class .. 6
dwil .. 8
MultiLinearModel-class 9
MultiTest-class ... 11
MultiWilcoxonTest-class 13
rankSum .. 16
Sam-class ... 17
SamSummary-class 20
significant ... 20
SingleGroup-class 21
SmoothTTest-class 24
TNoM-class .. 26
TNoMSummary-class 29
TwoGroupStats-class 30
variantT .. 32
Description

The Bum class is used to fit a beta-uniform mixture model to a set of p-values.

Usage

Bum(pvals, ...)
S4 method for signature 'Bum'
summary(object, tau=0.01, ...)
S4 method for signature 'Bum'
hist(x, res=100, xlab='P Values', main='', ...)
S4 method for signature 'Bum'
image(x, ...)
S4 method for signature 'Bum'
cutoffSignificant(object, alpha, by='FDR', ...)
S4 method for signature 'Bum'
selectSignificant(object, alpha, by='FDR', ...)
S4 method for signature 'Bum'
countSignificant(object, alpha, by='FDR', ...)
lhoodBum(object)

Arguments

pvals numeric vector containing values between 0 and 1
object object of class Bum
tau numeric scalar between 0 and 1, representing a cutoff on the p-values
x object of class Bum
res positive integer scalar specifying the resolution at which to plot the fitted distribution curve
xlab character string specifying the label for the x axis
main character string specifying the graph title
alpha Either the false discovery rate (if by = 'FDR') or the posterior probability (if by = 'EmpiricalBayes')
by character string denoting the method to use for determining cutoffs. Valid values are:
 • FDR
 • FalseDiscovery
 • EmpiricalBayes
... extra arguments for generic or plotting routines
Details

The BUM method was introduced by Stan Pounds and Steve Morris, although it was simultaneously discovered by several other researchers. It is generally applicable to any analysis of microarray or proteomics data that performs a separate statistical hypothesis test for each gene or protein, where each test produces a p-value that would be valid if the analyst were only performing one statistical test. When performing thousands of statistical tests, however, those p-values no longer have the same interpretation as Type I error rates. The idea behind BUM is that, under the null hypothesis that none of the genes or proteins is interesting, the expected distribution of the set of p-values is uniform. By contrast, if some of the genes are interesting, then we should see an overabundance of small p-values (or a spike in the histogram near zero). We can model the alternative hypothesis with a beta distribution, and view the set of all p-values as a mixture distribution.

Fitting the BUM model is straightforward, using a nonlinear optimizer to compute the maximum likelihood parameters. After the model has been fit, one can easily determine cutoffs on the p-values that correspond to desired false discovery rates. Alternatively, the original Pounds and Morris paper shows that their results can be reinterpreted to recover the empirical Bayes method introduced by Efron and Tibshirani. Thus, one can also determine cutoffs by specifying a desired posterior probability of significance.

Value

Graphical functions (hist and image) invisibly return the object on which they were invoked. The cutoffSignificant method returns a real number between zero and one. P-values below this cutoff are considered statistically significant at either the specified false discovery rate or at the specified posterior probability.

The selectSignificant method returns a vector of logical values whose length is equal to the length of the vector of p-values that was used to construct the Bum object. True values in the return vector mark the statistically significant p-values.

The countSignificant method returns an integer, the number of statistically significant p-values.

The summary method returns an object of class BumSummary.

Creating Objects

Although objects can be created directly using new, the most common usage will be to pass a vector of p-values to the Bum function.

Slots

pvals: numeric vector of p-values used to construct the object.

ahat: Model parameter

lhat: Model parameter

pihat: Model parameter

Methods

summary(object, tau=0.01, ...) For each value of the p-value cutoff tau, computes estimates of the fraction of true positives (TP), false negatives (FN), false positives (FP), and true negatives (TN).

hist(x, res=100, xlab='P Values', main=", ...\) Plots a histogram of the object, and overlays (1) a straight line to indicate the contribution of the uniform component and (2) the fitted beta-uniform distribution from the observed values. Colors in the plot are controlled by oompaColor$EXPECTED and oompaColor$OBSERVED.
image(x,...) Produces four plots in a 2x2 layout: (1) the histogram produced by hist; (2) a plot of cutoffs against the desired false discovery rate; (3) a plot of cutoffs against the posterior probability of coming from the beta component; and (4) an ROC curve.

cutoffSignificant(object, alpha, by='FDR',...) Computes the cutoff needed for significance, which in this case means arising from the beta component rather than the uniform component of the mixture. Significance is specified either by the false discovery rate (when by = 'FDR' or by = 'FalseDiscovery') or by the posterior probability (when by = 'EmpiricalBayes')

selectSignificant(object, alpha, by='FDR',...) Uses cutoffSignificant to determine a logical vector that indicates which of the p-values are significant.

countSignificant(object, alpha, by='FDR',...) Uses selectSignificant to count the number of significant p-values.

Author(s)
Kevin R. Coombes <krc@silicovore.com>

References
Pounds S, Morris SW.
Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values.
Benjamini Y, Hochberg Y.
Controlling the false discovery rate: a practical and powerful approach to multiple testing.
Efron B, Tibshirani R.
Empirical bayes methods and false discovery rates for microarrays.
Genet Epidemiol 2002, 23: 70-86.

See Also
Two classes that produce lists of p-values that can (and often should) be analyzed using BUM are MultiTtest and MultiLinearModel. Also see BumSummary.

Examples
showClass("Bum")
fake.data <- c(runif(700), rbeta(300, 0.3, 1))
a <- Bum(fake.data)
hist(a, res=200)

alpha <- (1:25)/100
plot(alpha, cutoffSignificant(a, alpha, by='FDR'),
 xlab='Desired False Discovery Rate', type='l',
 main='FDR Control', ylab='Significant P Value')

GAMMA <- 5*(10:19)/100
plot(GAMMA, cutoffSignificant(a, GAMMA, by='EmpiricalBayes'),
 ylab='Significant P Value', type='l',
 main='Empirical Bayes', xlab='Posterior Probability')

b <- summary(a, (0:100)/100)
b <- b@estimates
BumSummary-class

An implementation class. Users are not expected to create these objects directly; they are produced as return objects from the summary method for Bum.

Slots

- **bum**: object of class Bum
- **estimates**: data.frame
- **Fhat**: numeric

Methods

- **show** signature(object = "BumSummary"): Print the object, which contains a summary of the underlying Bum object. The summary contains a data frame with estimates of the fraction of true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN) at the set of p-value cutoffs specified in the call to the summary method.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

Bum

Examples

showClass("BumSummary")
Dudoit-class

Class "Dudoit"

Description
An implementation of the method of Dudoit and colleagues to apply the Westfall-Young adjustment to p-values to control the family-wise error rate when analyzing microarray data.

Usage
Dudoit(data, classes, nPerm=1000, verbose=TRUE)

S4 method for signature 'Dudoit,missing'
plot(x, y, xlab='T-Statistic', ylab='P-Value', ...)

S4 method for signature 'Dudoit'
cutoffSignificant(object, alpha, ...)

S4 method for signature 'Dudoit'
selectSignificant(object, alpha, ...)

S4 method for signature 'Dudoit'
countSignificant(object, alpha, ...)

Arguments
data

either a data frame or matrix with numeric values, or an ExpressionSet as defined in the BioConductor tools for analyzing microarray data.

classes

If data is a data frame or matrix, then classes must be either a logical vector or a factor. If data is an ExpressionSet, then classes can be a character string that names one of the factor columns in the associated phenoData subobject.
nPerm

integer scalar specifying the number of permutations to perform
verbose

logical scalar. If TRUE, prints additional output
object

object of class Dudoit
alpha

numeric scalar specifying the target family-wise error rate
x

object of class Dudoit
y

Nothing, since it is supposed to be missing. Changes to the Rd processor require documenting the missing entry.

xlab

character string specifying label for the x axis
ylab

character string specifying label for the y axis

... extra arguments for generic or plotting routines

Details
In 2002, Dudoit and colleagues introduced a method to adjust the p-values when performing gene-by-gene tests for differential expression. The adjustment was based on the method of Westfall and Young, with the goal of controlling the family-wise error rate.

Value
The standard method for plot returns what you would expect.

The cutoffSignificant method returns a real number (its input value alpha). The selectSignificant method returns a vector of logical values identifying the significant test results, and countSignificant returns an integer counting the number of significant test results.
Objects from the Class

As usual, objects can be created by `new`, but better methods are available in the form of the `Dudoit` function. The basic inputs to this function are the same as those used for row-by-row statistical tests throughout the ClassComparison package; a detailed description can be found in the `MultiTtest` class.

The additional input determines the number, `nPerm`, of permutations to perform. The accuracy of the p-value adjustment depends on this value. Since the implementation is in R (and does not call out to something compiled like C or FORTRAN), however, the computations are slow. The default value of 1000 can take a long time with modern microarrays that contain 40,000 spots.

Slots

- `adjusted.p`: numeric vector of adjusted p-values.
- `t.statistics`: Object of class `numeric` containing the computed t-statistics.
- `p.values`: Object of class `numeric` containing the computed p-values.
- `groups`: Object of class `character` containing the names of the classes being compared.
- `call`: Object of class `call` containing the function call that created the object.

Extends

Class `MultiTtest`, directly. In particular, objects of this class inherit methods for `summary`, `hist`, and `plot` from the base class.

Methods

- `cutoffSignificant(object, alpha, ...)`: Determine cutoffs on the adjusted p-values at the desired significance level. In other words, this function simply returns `alpha`.
- `selectSignificant(object, alpha, ...)`: Compute a logical vector for selecting significant test results.
- `countSignificant(object, alpha, ...)`: Count the number of significant test results.
- `plot signature(x=Dudoit, y=missing): ...`

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

See Also

`Bum, MultiTtest, SmoothTtest`
Examples

```r
showClass("Dudoit")
g <- 10000
ns <- 15
nd <- 200ake.class <- factor(rep(c('Var A', 'Var B'), each=ns))
fake.data <- matrix(rnorm(ng*ns*2), nrow=ng, ncol=2*ns)
fake.data[(nd+1):(2*nd), 1:ns] <- fake.data[(nd+1):(2*nd), 1:ns] - 2

# the permutation test is slow. it really needs many more
# than 10 permutations, but this is just an example...
dud <- Dudoit(fake.data, fake.class, nPerm=10)
summary(dud)
plot(dud)
countSignificant(dud, 0.05)
```

dwil

Wilcoxon Density Function

Description

Computes the density function for the Wilcoxon rank-sum distribution without centering.

Usage

```r
dwil(q, m, n)
```

Arguments

- `q`: vector of quantiles
- `m`: number of observations in the first sample
- `n`: number of observations in the second sample

Details

Computes the density function for the Wilcoxon rank-sum distribution, using exact values when both groups have fewer than 50 items and switching to a normal approximation otherwise. It was originally written for S-Plus, which still perversely insists that `m` and `n` must be less than 50. The function was retained when the OOMPA library was ported to R, since S-Plus keeps the actual rank-sum but R centers the distribution at zero. This function encapsulated the difference, allowing everything else to continue to work as it had worked previously.

Value

A vector of the same length as `q` containing (approximate or exact) values of the density function.

Author(s)

Kevin R. Coombes <krc@silicovore.com>
MultiLinearModel-class

Description

Class to fit multiple (row-by-row) linear (fixed-effects) models on microarray or proteomics data.

Usage

```
MultiLinearModel(form, clindata, arraydata)
## S4 method for signature 'MultiLinearModel'
summary(object, ...)
hist(x, xlab='F Statistics', main=NULL, ...)
## S4 method for signature 'MultiLinearModel,missing'
plot(x, y, ylab=deparse(substitute(y)), ...)
## S4 method for signature 'MultiLinearModel'
anova(object, ob2, ...)
multiTukey(object, alpha)
```

Arguments

- `form`: formula object specifying the linear model
- `clindata`: either a data frame of "clinical" or other covariates, or an ExpressionSet.
- `arraydata`: matrix or data frame of values to be explained by the model. If clindata is an ExpressionSet, then arraydata can be omitted, since it is assumed to be part of the ExpressionSet.
- `object`: object of class MultiLinearModel
- `ob2`: object of class MultiLinearModel
- `x`: object of class MultiLinearModel
- `y`: optional numeric vector
- `xlab`: character string specifying label for the x-axis
- `ylab`: character string specifying label for the y-axis
- `main`: character string specifying graph title
- `...`: extra arguments for generic or plotting functions
- `alpha`: numeric scalar between 0 and 1 specifying the significance level for the Tukey test.

See Also

- MultiWilcoxonTest

Examples

```
dwil(51:60, 9, 3)
dwil(51:60, 9, 51)
```
The `anova` method returns a data frame. The rows in the data frame correspond to the rows in the `arraydata` object that was used to construct the `MultiLinearModel` objects. The first column contains the F-statistics and the second column contains the p-values.

The `multiTukey` function returns a vector whose length equals the number of rows in the `arraydata` object used to construct the `MultiLinearModel`. Assuming that the overall F-test was significant, differences in group means (in each data row) larger than this value are significant by Tukey's test for honestly significant difference. (Of course, that statement is incorrect, since we haven’t fully corrected for multiple testing. Our standard practice is to take the p-values from the row-by-row F-tests and evaluate them using the beta-uniform mixture model (see `Bum`). For the rows that correspond to models whose p-values are smaller than the `Bum` cutoff, we simply use the Tukey HSD values without further modification.)

Objects should be created by calling the `MultiLinearModel` function. The first argument is a formula specifying the linear model, in the same manner that it would be passed to `lm`. We will fit the linear model separately for each row in the `arraydata` matrix. Rows of `arraydata` are attached to the `clindata` data frame and are always referred to as "Y" in the formulas. In particular, this implies that `clindata` can not include a column already called "Y". Further, the implementation only works if "Y" is the response variable in the model.

The BioConductor packages uses an `ExpressionSet` to combine microarray data and clinical covariates (known in their context as `phenoData` objects) into a single structure. You can call `MultiLinearModel` using an `ExpressionSet` object for the `clindata` argument. In this case, the function extracts the `phenoData` slot of the `ExpressionSet` to use for the clinical covariates, and extracts the `exprs` slot of the `ExpressionSet` object to use for the array data.

A call object describing how the object was constructed.
model: The formula object specifying the linear model.
F.statistics: A numeric vector of F-statistics comparing the linear model to the null model.
p.values: A numeric vector containing the p-values associated to the F-statistics.
coefficients: A matrix of the coefficients in the linear models.
predictions: A matrix of the (Y-hat) values predicted by the models.
sse: A numeric vector of the sum of squared error terms from fitting the models.
ssr: A numeric vector of the sum of squared regression terms from the model.
df: A numeric vector (of length two) containing the degrees of freedom for the F-tests.

Write out a summary of the object.
Create a histogram of the F-statistics.
Plot the F-statistics as a function of the row index.
Plot the F-statistics against the numeric vector y.
Perform row-by-row F-tests comparing two different linear models.
Details

The MultiLinearModel constructor computes row-by-row F-tests comparing each linear model to the null model $Y \sim 1$. In many instances, one wishes to use an F-test to compare two different linear models. For instance, many standard applications of analysis of variance (ANOVA) can be described using such a comparison between two different linear models. The anova method for the MultiLinearModel class performs row-by-row F-tests comparing two competing linear models. The implementation of MultiLinearModel does not take the naive approach of using either apply or a for-loop to attach rows one at a time and fit separate linear models. All the models are actually fit simultaneously by a series of matrix operations, which greatly reduces the amount of time needed to compute the models. The constraint on the column names in clindata still holds, since one row is attached to allow model.matrix to determine the contrasts matrix.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

anova, lm, Bum, MultiTtest, MultiWilcoxonTest

Examples

```r
showClass("MultiLinearModel")
ng <- 10000
ns <- 50
dat <- matrix(rnorm(ng*ns), ncol=ns)
cla <- factor(rep(c("VarA", "VarB"), 25))
cla2 <- factor(rep(c("VarX", "VarY", "VarZ"), times=c(15, 20, 15)))
covars <- data.frame(Grade=cla, Stage=cla2)
res <- MultiLinearModel(Y ~ Grade + Stage, covars, dat)
summary(res)
hist(res, breaks=101)
plot(res)
plot(res, res@p.values)

graded <- MultiLinearModel(Y ~ Grade, covars, dat)
summary(graded)

hist(graded@p.values, breaks=101)
hist(res@p.values, breaks=101)

oop <- anova(res, graded)
hist(oop$p.values, breaks=101)
```

MultiTtest-class

Class "MultiTtest"

Description

Class to perform row-by-row t-tests on microarray or proteomics data.
Usage

MultiTtest(data, classes, na.rm=TRUE)
S4 method for signature 'MultiTtest'
summary(object, ...)
S4 method for signature 'MultiTtest'
as.data.frame(x, row.names=NULL, optional=FALSE, ...)
S4 method for signature 'MultiTtest'
hist(x, xlab='T Statistics', main=NULL, ...)
S4 method for signature 'MultiTtest,missing'
plot(x, y, ylab='T Statistics', ...)
S4 method for signature 'MultiTtest,ANY'
plot(x, y, xlab='T Statistics', ylab=deparse(substitute(y)), ...)

Arguments

data
either a data frame or matrix with numeric values, or an ExpressionSet as defined in the BioConductor tools for analyzing microarray data

classes
If data is a data frame or matrix, then classes must be either a logical vector or a factor. If data is an ExpressionSet, then classes can be a character string that names one of the factor columns in the associated phenoData subobject.

na.rm
logical scalar. If TRUE, compute t-statistics after omitting NA values from individual rows of the data matrix

object
object of class MultiTtest

x
object of class MultiTtest

y
numeric vector

xlab
character string specifying the label for the x axis

ylab
character string specifying the label for the y axis

main
character string specifying the plot title

row.names
see the base version

optional
see the base version

...
extra arguments for generic or plotting routines

Value

The graphical routines invisibly return the object against which they were invoked.

Creating objects

Although objects can be created using new, the preferred method is to use the MultiTtest generator. In the simplest case, you simply pass in a data matrix and a logical vector assigning classes to the columns, and the constructor performs row-by-row two-sample t-tests and computes the associated (single test) p-values. To adjust for multiple testing, you can pass the p-values on to the Bum class.

If you use a factor instead of a logical vector, then the t-test compares the first level of the factor to everything else. To handle the case of multiple classes, see the MultiLinearModel class.

As with other class comparison functions that are part of the OOMPA, we can also perform statistical tests on ExpressionSet objects from the BioConductor libraries. In this case, we pass in an ExpressionSet object along with the name of a factor to use for splitting the data.
MultiWilcoxonTest-class

Slots

t.statistics: Object of class numeric containing the computed t-statistics.
p.values: Object of class numeric containing the computed p-values.
df: Numeric vector of the degrees of freedom per gene. Introduced to allow for missing data.
groups: Object of class character containing the names of the classes being compared.
call: Object of class call containing the function call that created the object.

Methods

summary(object, ...) Write out a summary of the object.

hist(x, xlab='T Statistics', main=NULL, ...) Produce a histogram of the t-statistics.

plot(x) Produces a scatter plot of the t-statistics against their index.

plot(x,y) Produces a scatter plot of the t-statistics in the object x against the numeric vector y.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

matrixT, Bum, Dudoit, MultiLinearModel

Examples

showClass("MultiTtest")
ng <- 10000
ns <- 50
dat <- matrix(rnorm(ng*ns), ncol=ns)
cla <- factor(rep(c("A", "B"), each=25))
res <- MultiTtest(dat, cla)
summary(res)
hist(res, breaks=101)
plot(res)
plot(res, res@p.values)
hist(res@p.values, breaks=101)

dat[1,1] <- NA
mm <- matrixMean(dat, na.rm=TRUE)
vv <- matrixVar(dat, mm, na.rm=TRUE)
tt <- matrixT(dat, cla, na.rm=TRUE)
mtt <- MultiTtest(dat,cla)

MultiWilcoxonTest-class

Class "MultiWilcoxonTest"

Description

The MultiWilcoxonTest class is used to perform row-by-row Wilcoxon rank-sum tests on a data matrix. Significance cutoffs are determined by the empirical Bayes method of Efron and Tibshirani.
Usage

MultiWilcoxonTest(data, classes, histsize=NULL)
S4 method for signature 'MultiWilcoxonTest'
summary(object, prior=1, significance=0.9, ...)
S4 method for signature 'MultiWilcoxonTest'
hist(x, xlab='Rank Sum',
 ylab='Prob(Different | Y)', main='', ...)
S4 method for signature 'MultiWilcoxonTest,missing'
plot(x, prior=1, significance=0.9,
 ylim=c(-0.5, 1), xlab='Rank Sum', ylab='Prob(Different | Y)', ...)
S4 method for signature 'MultiWilcoxonTest'
cutoffSignificant(object, prior, significance, ...)
S4 method for signature 'MultiWilcoxonTest'
selectSignificant(object, prior, significance, ...)
S4 method for signature 'MultiWilcoxonTest'
countSignificant(object, prior, significance, ...)

Arguments

data either a data frame or matrix with numeric values, or an ExpressionSet as
defined in the BioConductor tools for analyzing microarray data.

classes If data is a data frame or matrix, then classes must be either a logical vector or
a factor. If data is an ExpressionSet, then classes can be a character string
that names one of the factor columns in the associated phenoData subobject.

histsize An integer; the number of bins used for the histogram summarizing the Wilcoxon
statistics. When NULL, each discrete rank-sum value gets its own bin.

object an object of the MultiWilcoxonTest class.

x an object of the MultiWilcoxonTest class.

xlab character string specifying label for the x axis

ylab character string specifying label for the y axis

ylim Plotting limits on the y-axis

main character string specifying graph title

prior Prior probability that an arbitrary gene is not differentially expressed, or that an
arbitrary row does not yield a significant Wilcoxon rank-sum statistic.

significance Desired level of posterior probability

... extra arguments for generic or plotting routines

Details

See the paper by Efron and Tibshirani.

Value

The standard methods summary, hist, and plot return what you would expect.

The cutoffSignificant method returns a list of two integers. Rank-sum values smaller than
the first value or larger than the second value are statistically significant in the sense that their
posterior probability exceeds the specified significance level given the assumptions about the
prior probability of not being significant.

The selectSignificant method returns a vector of logical values identifying the significant test
results, and countSignificant returns an integer counting the number of significant test results.
Creating Objects

As usual, objects can be created by `new`, but better methods are available in the form of the `MultiWilcoxonTest` function. The inputs to this function are the same as those used for row-by-row statistical tests throughout the ClassComparison package; a detailed description can be found in the `MultiTtest` class.

The constructor computes row-by-row Wilcoxon rank-sum statistics on the input data, comparing the two groups defined by the `classes` argument. It also estimates the observed and theoretical (expected) density functions for the collection of rank-sum statistics.

The additional input argument, `histsize` is usually best left to its default value. In certain pathological cases, we have found it necessary to use fewer bins; one suspects that the underlying model does not adequately capture the complexity of those situations.

Slots

- `rank.sum.statistics`: numeric vector containing the computed rank-sum statistics.
- `xvals`: numeric vector, best thought of as the vector of possible rank-sum statistics given the sizes of the two groups.
- `theoretical.pdf`: numeric vector containing the theoretical density function evaluated at the points of `xvals`.
- `pdf`: numeric vector containing the empirical density function computed at the points of `xvals`.
- `unravel`: numeric vector containing a smoothed estimate (by Poisson regression using B-splines) of the empirical density function evaluated at `xvals`.
- `groups`: A vector containing the names of the groups defined by `classes`.
- `call`: object of class `call` representing the function call that created the object.

Methods

- `summary(object, prior=1, significance=0.9, ...)`: Write out a summary of the object. For a given value of the `prior` probability of not being differentially expressed and a given significance cutoff on the posterior probability, reports the cutoffs and number of items in both tails of the distribution.
- `hist(x, xlab='Rank Sum', ylab='Prob(Different|Y)', main='', ...)`: Plot a histogram of the rank-sum statistics, with overlaid curves representing the expected and observed distributions. Colors of the curves are controlled by `oompaColor$EXPECTED` and `oompaColor$OBSERVED`.
- `plot(x, prior=1, significance=0.9, ylim=c(-0.5, 1), xlab='Rank Sum', ylab='Prob(Different | Y)', ...)`: Plots the posterior probability of being differentially expressed for given values of the `prior`. Horizontal lines are added at each specified `significance` level for the posterior probability.
- `cutoffSignificant(object, prior, significance, ...)`: Determine cutoffs on the rank-sum statistic at the desired significance level.
- `selectSignificant(object, prior, significance, ...)`: Compute a logical vector for selecting significant test results.
- `countSignificant(object, prior, significance, ...)`: Count the number of significant test results.

Author(s)

Kevin R. Coombes <krc@silicovore.com>
References

Efron B, Tibshirani R.
Empirical bayes methods and false discovery rates for microarrays.
Genet Epidemiol 2002, 23: 70-86.

Pounds S, Morris SW.
Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values.

See Also

Implementation is handled in part by the functions \(\text{dwil} \) and \(\text{rankSum} \). The empirical Bayes results for alternative tests (such as \(\text{MultiTtest} \)) can be obtained using the beta-uniform mixture model in the \(\text{Bum} \) class.

Examples

```r
showClass("MultiWilcoxonTest")
ga <- 10000
ns <- 15
nd <- 200
fake.class <- factor(rep(c('A', 'B'), each=ns))
fake.data <- matrix(rnorm(ng*ns*2), nrow=ng, ncol=2*ns)
fake.data[(nd+1):(2*nd), 1:ns] <- fake.data[(nd+1):(2*nd), 1:ns] - 2

da <- MultiWilcoxonTest(fake.data, fake.class)
hist(a)
plot(a)
plot(a, prior=0.85)
abline(h=0)
cutoffSignificant(a, prior=0.85, signif=0.95)
countSignificant(a, prior=0.85, signif=0.95)
```

rankSum

Wilcoxon Rank-Sum Statistic

Description

Compute the Wilcoxon rank-sum statistic.

Usage

```r
rankSum(data, selector)
```

Arguments

- **data** numeric vector
- **selector** logical vector the same length as data
Details

This is an efficient function to compute the value of the Wilcoxon rank-sum statistic without the extra overhead of the full `wilcox.test` function. It is used internally by the `MultiWilcoxonTest` class to perform row-by-row Wilcoxon tests.

Value

Returns an integer, the rank-sum of the subset of the data for which the selector is true.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

dwil, `MultiWilcoxonTest`

Examples

dd <- rnorm(100)
c <- rep(c(TRUE, FALSE), each=50)
rankSum(dd, cc)

Sam-class

Class "Sam"

Description

Implements the "Significance Analysis of Microarrays" approach to detecting differentially expressed genes.

Usage

```r
Sam(data, classes, nPerm=100, verbose=TRUE)
## S4 method for signature 'Sam' plot(x, y, tracks=NULL, xlab='Expected T Statistics (Empirical)',
  ylab='Observed T Statistics', ...) 
## S4 method for signature 'Sam' summary(object, cutoff=1, ...) 
## S4 method for signature 'Sam' selectSignificant(object, cutoff=1, ...) 
## S4 method for signature 'Sam' countSignificant(object, cutoff=1, ...)
```

Arguments

data

Either a data frame or matrix with numeric values or an `ExpressionSet` as defined in the BioConductor tools for analyzing microarray data.

classes

If `data` is a data frame or matrix, then `classes` must be either a logical vector or a factor. If `data` is an `ExpressionSet`, then `classes` can be a character string that names one of the factor columns in the associated `phenoData` subobject.
Sam-class

nPerm: An integer; the number of permutations
verbose: A logical flag
x: A Sam object
y: Nothing, since it is supposed to be missing. Changes to the Rd processor require documenting the missing entry.
tracks: a numeric vector
xlab: Label for the x axis
ylab: Label for the y axis
object: A Sam object
cutoff: A numeric value
... The usual extra arguments to generic functions

Details

The SAM approach to analyzing microarray data was developed by Tusher and colleagues; their implementation is widely available. This is an independent implementation based on the description in their original paper, customized to use the same interface (and thus work with ExpressionSet objects) used by the rest of the ClassComparison package. The fundamental idea behind SAM is that the observed distribution of row-by-row two-sample t-tests should be compared not to the theoretical null distribution but to a null distribution estimated by a permutation test. The Sam constructor performs the permutation test.

Value

summary returns an object of class SamSummary.
selectSignificant returns a vector of logical values.
countSignificant returns an integer.

Creating Objects

As usual, objects can be created by new, but better methods are available in the form of the Sam function. The inputs to this function are the same as those used for row-by-row statistical tests throughout the ClassComparison package; a detailed description can be found in the MultiTtest class.

Slots

t.statistics: numeric vector containing the observed t-statistics.
observed: numeric vector containing the sorted observed t-statistics.
expected: numeric vector of the expected distribution of t-statistics based on a permutation test.
sim.data: numeric matrix containing all the t-statistics from all the permutations.
call: object of class call specifying the function call that was used to create this object.
Methods

summary(object, cutoff=1, ...) Compute a summary of the object.

plot(x, tracks=NULL, xlab='Expected T Statistics (Empirical)', ylab='Observed t Statistics', ...) Plot the observed and expected t-statistics. The `tracks` argument causes parallel lines to be drawn on either side of the quantile-quantile central line, at the specified offsets. Colors in the plot are controlled by the current values of `oompaColor$CENTRAL.LINE` and `oompaColor$CONFIDENCE.CURVE`.

selectSignificant(object, cutoff=1, ...) Compute a vector that selects significant values.

countSignificant(object, cutoff=1, ...) Count the number of significant values.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

See Also

Bum, MultiTtest

Examples

```r
showClass("Sam")
ng <- 10000
ns <- 50
nd <- 100
dat <- matrix(rnorm(ng*ns), ncol=ns)
dat[1:nd, 1:(ns/2)] <- dat[1:nd, 1:(ns/2)] + 2
dat[(nd+1):(2*nd), 1:(ns/2)] <- dat[(nd+1):(2*nd), 1:(ns/2)] - 2
cla <- factor(rep(c('VarA', 'VarB'), each=25))

res <- Sam(dat, cla)
plot(res)
plot(res, tracks=1:3)
summary(res)
summary(res, cutoff=2)

a <- summary(res)
plot(a@significant.calls)
plot(a@significant.calls[1:300])

countSignificant(res, 1)
```
SamSummary-class

Class "SamSummary"

Description

An implementation class. Users are not expected to create these objects directly; they are produced as return objects from the summary method for Sam.

Slots

fdr: numeric scalar between 0 and 1 specifying the expected false discovery rate
hi: Upper threshold for significance
lo: Lower threshold for significance
cutoff: numeric scalar specified in the call to the Sam summary method.
significant.calls: vector of logical values
average.false.count: The average number of false positives in the permuted data at this cutoff level.

Methods

show signature(object = SamSummary): Print the object, which contains a summary of the underlying Sam object.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

Sam

Examples

showClass("SamSummary")

significant

Generic Methods for Significance

Description

In the world of multiple testing that is inhabited by most microarray or protein profiling experiments, analysts frequently perform separate statistical tests for each gene or protein in the experiment. Determining cutoffs that achieve statistical significance (in a meaningful way) is an inherent part of the procedure. It is then common to select the significant items for further processing or for preparing reports, or at least to count the number of significant items. These generic functions provide a standard set of tools for selecting and counting the significant items, which can be used with various statistical tests and various ways to account for multiple testing.
SingleGroup-class

Usage

```r
## S4 method for signature 'ANY'
cutoffSignificant(object, ...)
## S4 method for signature 'ANY'
selectSignificant(object, ...)
## S4 method for signature 'ANY'
countSignificant(object, ...)
```

Arguments

- `object` an object that performs multiple statistical tests on microarray or proteomics data
- `...` additional arguments affecting these generic methods

Value

cutoffSignificant returns appropriate cutoff values that achieve specified significance criteria.
selectSignificant returns a logical vector, with TRUE values indicating items that satisfy the cutoff making them statistically significant.
countSignificant returns an integer, representing the number of significant items.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

SingleGroup-class Class “SingleGroup”

Description

Preliminary analysis of one group of samples for use in the SmoothTtest class. A key feature is the standard quality control plot.

Usage

```r
SingleGroup(avg, sd, span=0.5, name='')
## S4 method for signature 'SingleGroup'
as.data.frame(x, row.names=NULL, optional=FALSE)
## S4 method for signature 'SingleGroup'
summary(object, ...)
## S4 method for signature 'SingleGroup'
print(x, ...)
## S4 method for signature 'SingleGroup'
show(object)
## S4 method for signature 'SingleGroup,missing'
plot(x, multiple=3, ccl=0, main=x@name, xlab='Mean', ylab='Std Dev', xlim=0, ylim=0, ...)
```
SingleGroup-class

Arguments

avg numeric vector of mean values
sd numeric vector of standard deviations
span parameter is passed onto loess
name character string specifying the name of this object
object object of class SingleGroup
x object of class SingleGroup
multiple numeric scalar specifying the multiple of the smoothed standard deviation to call significant
ccl list containing objects of the ColorCoding class. If left at its default value of zero, colors are chosen automatically.
main character string specifying plot title
xlab character string specifying label for the x axis
ylab character string specifying label for the y axis
xlim Programming limits for the x axis. If left at the default value of zero, then the limits are automatically generated
ylim Programming limits for the y axis. If left at the default value of zero, then the limits are automatically generated
row.names See the base version of as.data.frame.default
optional See the base version of as.data.frame.default
... extra arguments for generic or plotting routines

Details

In 2001 and 2002, Baggerly and Coombes developed the smooth t-test for finding differentially expressed genes in microarray data. Along with many others, they began by log-transforming the data as a reasonable step in the direction of variance stabilization. They observed, however, that the gene-by-gene standard deviations still seemed to vary in a systematic way as a function of the mean log intensity. By borrowing strength across genes and using loess to fit the observed standard deviations as a function of the mean, one presumably got a better estimate of the true standard deviation.

Creating Objects

Objects can be created by calls to the SingleGroup constructor. Users rarely have need to create these objects directly; they are usually created as a consequence of the construction of an object of the SmoothTtest class.

Slots

name: character string specifying the name of this object
avg: numeric vector of mean values
sd: numeric vector of standard deviations
span: parameter used in the loess function to fit sd as a function of avg.
fit: list containing components x and y resulting from the loess fit
score: numeric vector specifying the ratio of the pointwise standard deviations to their smooth (loess) estimates
Methods

`as.data.frame(x, row.names=NULL, optional=FALSE)` Combine the slots containing numeric vectors into a data frame, suitable for printing or exporting.

`summary(object, . . .)` Write out a summary of the object.

`print(x, . . .)` Print the entire object. You never want to do this.

`show(object)` Print the entire object. You never want to do this.

`plot(x, multiple=3, ccl=0, main=x@name, xlab='Mean', ylab='Std Dev', xlim=0, ylim=0, . . .)` Produce a scatter plot of the standard deviations (`x@sd`) as a function of the means (`x@avg`). The appropriate multiple of the `loess` fit is overlaid, and points that exceed this multiple are flagged in a different color. Colors in the plot are controlled by the current values of `oompaColor$CENTRAL.LINE`, `oompaColor$CONFIDENCE.CURVE`, `oompaColor$BORING`, `oompaColor$BAD.REPLICATE`, and `oompaColor$WORST.REPLICATE`.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

See Also

`SmoothTtest`

Examples

```r
showClass("SingleGroup")
m <- rnorm(1000, 8, 2.5)
v <- rnorm(1000, 0.7)
plot(m, v)
x <- SingleGroup(m, v, name='bogus')
summary(x)
plot(x)
plot(x, multiple=2)
```
SmoothTtest-class

Class “SmoothTtest”

Description

Implements the smooth t-test for differential expression as developed by Baggerly and Coombes.

Usage

SmoothTtest(stats, aname='Group One', bname='Group Two', name=paste(aname, 'vs.', bname))

S4 method for signature 'SmoothTtest'

as.data.frame(x, row.names=NULL, optional=FALSE)

S4 method for signature 'SmoothTtest'

summary(object, ...)

S4 method for signature 'SmoothTtest,missing'

plot(x, folddiff=3, goodflag=2, badch=4, ccl=0,
 name=x@name, pch='.', xlab='log intensity', ylab='log ratio', ...)

Arguments

- **stats**: object of class `TwoGroupStats`
- **aname**: character string specifying the name of the first group
- **bname**: character string specifying the name of the second group
- **name**: character string specifying the name of this object
- **object**: object of class `SmoothTtest`
- **x**: object of class `SmoothTtest`
- **row.names**: See the base version of `as.data.frame.default`
- **optional**: See the base version of `as.data.frame.default`
- **folddiff**: numeric scalar specifying the level of fold difference considered large enough to be indicated in the plots
- **goodflag**: numeric scalar specifying the level (in standard deviation units) of the smooth t-statistic considered large enough to be indicated in the plot
- **badch**: numeric scalar specifying the level of variability in single groups considered large enough to be worrisome. See the multiple argument to the plot method in the `SingleGroup` class.
- **ccl**: list containing objects of class `ColorCoding`. If left at its default value of zero, colors are chosen automatically.
- **pch**: default plotting character
- **xlab**: character string specifying label for the x axis
- **ylab**: character string specifying label for the y axis
- **...**: extra arguments for generic or plotting routines
Details

In 2001 and 2002, Baggerly and Coombes developed the smooth t-test for finding differentially expressed genes in microarray data. Along with many others, they began by log-transforming the data as a reasonable step in the direction of variance stabilization. They observed, however, that the gene-by-gene standard deviations still seemed to vary in a systematic way as a function of the mean log intensity. By borrowing strength across genes and using loess to fit the observed standard deviations as a function of the mean, one presumably got a better estimate of the true standard deviation.

These smooth estimates are computed for each of two groups of samples being compared. They are then combined (gene-by-gene using the usual univariate formulas) to compute pooled "smooth" estimates of the standard deviation. These smooth estimates are then used in gene-by-gene t-tests.

The interesting question then arises of how to compute and interpret p-values associated to these individual tests. The liberal argument asserts that, because smoothing uses data from hundreds of measurements to estimate the standard deviation, it can effectively be treated as "known" in the t-tests, which should thus be compared against the normal distribution. A conservative argument claims that the null distribution should still be the t-distribution with the degrees of freedom determined in the usual way by the number of samples. The truth probably lies somewhere in between, and is probably best approximated by some kind of permutation test. In this implementation, we take the coward's way out and don't provide any of those alternatives. You have to extract the t-statistics (from the smooth.t.statistics slot of the object) and compute your own p-values in your favorite way. If you base the computations on a theoretical model rather than a permutation test, then the Bum class provides a convenient way to account for multiple testing.

Creating Objects

In practice, users will first use a data frame and a classification vector (or an ExpressionSet) to construct an object of the TwoGroupStats object. This object can then be handed directly to the SmoothTtest function to perform the smooth t-test.

Slots

- **one**: object of class SingleGroup representing a loess smooth of standard deviation as a function of the mean in the first group of samples
- **two**: object of class SingleGroup representing a loess smooth of standard deviation as a function of the mean in the second group of samples
- **smooth.t.statistics**: numeric vector containing the smooth t-statistics
- **fit**: data.frame with two columns, x and y, containing the smooth estimates of the pooled standard deviation
- **dif**: numeric vector of the differences in mean values between the two groups
- **avg**: numeric vector of the overall mean value
- **aname**: character string specifying the name of the first group
- **bname**: character string specifying the name of the second group
- **name**: character string specifying the name of this object
- **stats**: object of class TwoGroupStats that was used to create this object

Methods

- **as.data.frame(x, row.names=NULL, optional=FALSE)**: Convert the object into a data frame suitable for printing or exporting.
summary(object, ...) Write out a summary of the object.

\texttt{plot(x, folddiff=3, goodflag=2, badch=4, ccl=0, name=x@name, pch=',', xlab='log intensity', ylab='log ratio', ...)}

Create a set of six plots. The first two plots are the QC plots from the SingleGroup objects representing the two groups of samples. The third plot is a scatter plot comparing the means in the two groups. The fourth plot is Bland-Altman plot of the overall mean against the difference in means (also known colloquially as an M-vs-A plot). The fifth plot is a histogram of the smooth t-statistics. The final plot is a scatter plot of the smooth t-statistics as a function of the mean intensity. Colors in the plots are controlled by the current values of \texttt{oompaColor$BORING}, \texttt{oompaColor$SIGNIFICANT}, \texttt{oompaColor$BAD.REPLICATE}, \texttt{oompaColor$WORST.REPLICATE}, \texttt{oompaColor$FOLD.DIFFERENCE}, \texttt{oompaColor$CENTRAL.LINE}, and \texttt{oompaColor$CONFIDENCE.CURVE}.

Author(s)
Kevin R. Coombes <krc@silicovore.com>

References

See Also
\texttt{Bum}, \texttt{MultiTtest}, \texttt{SingleGroup}, \texttt{TwoGroupStats}

Examples
\begin{verbatim}
showClass("SmoothTtest")
bogus <- matrix(rnorm(30*1000, 8, 3), ncol=30, nrow=1000)
splitter <- rep(FALSE, 30)
splitter[16:30] <- TRUE
x <- TwoGroupStats(bogus, splitter)
y <- SmoothTtest(x)

opar <- par(mfrow=c(2, 3), pch=',')
plot(y, badch=2, goodflag=1)
par(opar)
\end{verbatim}

TNoM-class

Classes "TNoM" and "fullTNoM"

Description

Implements the "Total Number of Misclassifications" method for finding differentially expressed genes.
Usage

TNoM(data, classes, verbose=TRUE)
S4 method for signature 'TNoM'
summary(object, ...)
S4 method for signature 'TNoM'
update(object, nPerm, verbose=FALSE, ...)
S4 method for signature 'TNoM'
selectSignificant(object, cutoff, ...)
S4 method for signature 'TNoM'
countSignificant(object, cutoff, ...)
S4 method for signature 'fullTNoM,missing'
plot(x, y, ...)
S4 method for signature 'fullTNoM'
hist(x, ...)

Arguments

data Either a data frame or matrix with numeric values or an ExpressionSet as defined in the BioConductor tools for analyzing microarray data.

classes If data is a data frame or matrix, then classes must be either a logical vector or a factor. If data is an ExpressionSet, then classes can be a character string that names one of the factor columns in the associated phenoData subobject.

verbose logical scalar. If TRUE, print out intermediate results

object object of class TNoM

nPerm integer scalar specifying the number of permutations to perform

cutoff integer scalar

x object of class fullTNoM

y Nothing, since it is supposed to be missing. Changes to the Rd processor require documenting the missing entry.

... extra arguments to generic or plotting routines

Details

The TNoM method was developed by Yakhini and Ben-Dor and first applied in the melanoma microarray study by Bittner and colleagues (see references). The goal of the method is to detect genes that are differentially expressed between two groups of samples. The idea is that each gene serves as a potential classifier to distinguish the two groups. One starts by determining an optimal cutoff on the expression of each gene and counting the number of misclassifications that gene makes. Next, we bin genes based on the total number of misclassifications. This distribution can be compared with the expected value (by simulating normal data sets of the same size). Alternatively, one can estimate the null distribution directly by scrambling the sample labels to perform a permutation test. The TNoM constructor computes the optimal cutoffs and the misclassification rates. The update method performs the simulations and permutation tests, producing an object of the fullTNoM class.

Value

summary returns a TNoMSummary object.

update returns a fullTNoM object.

selectSignificant returns a vector of logical values.

countSignificant returns an integer.
Creating Objects

Although objects of the class can be created by a direct call to `new`, the preferred method is to use the TNoM generator. The inputs to this function are the same as those used for row-by-row statistical tests throughout the ClassComparison package; a detailed description can be found in the MultiTtest class.

Slots

Objects of the TNoM class have the following slots:

- `data`: The data matrix used to construct the object
- `tnomData`: numeric vector, whose length is the number of rows in `data`, recording the minimum number of misclassification achieved using this data row.
- `nCol`: The number of columns in `data`
- `nRow`: The number of rows in `data`
- `classifier`: The classification vector used to create the object.
- `call`: The function call that created the object

Objects of the fullTNoM class have the following slots:

- `dex`: Numeric vector of the different possible numbers of misclassifications
- `fakir`: Numeric vector of expected values based on simulations
- `obs`: Numeric vector of observed values
- `scr`: Numeric vector of values based on a permutation test
- `name`: A character string with a name for the object

Methods

Objects of the TNoM class have the following methods:

- `summary(object, ...)`: Write out a summary of the object, including the number of genes achieving each possible number of misclassifications.
- `countSignificant(object, cutoff, ...)`: Count the number of significant genes at the given `cutoff`.
- `selectSignificant(object, cutoff, ...)`: Get a vector for selecting the number of significant genes at the given `cutoff`.
- `update(object, nPerm, verbose=FALSE, ...)`: Perform simulation and permutation tests on the TNoM object.

Objects of the fullTNoM class have the following methods:

- `plot(x, ...)`: Plot a summary of the TNoM object. This consists of three curves: the observed cumulative number of genes at each misclassification level, along with the corresponding numbers expected based on simulations or permutation tests. The colors of the curves are controlled by the values of `oompaColor$OBSERVED`, `oompaColor$EXPECTED`, and `oompaColor$PERMTEST`.
- `hist(x, ...)`: Plot a not terribly useful nor informative histogram of the results.

Author(s)

Kevin R. Coombes <krc@silicovore.com>
References

See Also
Bum, MultiTtest, MultiWilcoxonTest

Examples
showClass("TNoM")
showClass("fullTNoM")
n.genes <- 200
n.samples <- 10
bogus <- matrix(rnorm(n.samples*n.genes, 0, 3), ncol=n.samples)
splitter <- rep(FALSE, n.samples)
splitter[sample(1:n.samples, trunc(n.samples/2))] <- TRUE
tn <- TNoM(bogus, splitter)
summary(tn)

tnf <- update(tn)
plot(tnf)
hist(tnf)

TNoMSummary-class

Class "TNoMSummary"

Description
An implementation class. Users are not expected to create these objects directly; they are produced as return objects from the summary method for TNoM.

Slots
TNoM: object of class TNoM ~~
counts: object of class numeric ~~

Methods
show signature(object = TNoMSummary): Print the object, which contains a summary of the underlying TNoM object. In particular, the summary reports the number of genes achieving each possible number of misclassifications.

Author(s)
Kevin R. Coombes <krc@silicovore.com>
See Also

TNoM

Examples

showClass("TNoMSummary")

TwoGroupStats-class Class "TwoGroupStats"

Description

Compute row-by-row means and variances for a data matrix whose columns belong to two different groups of interest.

Usage

TwoGroupStats(data, classes, name=comparison, name1=A, name2=B)
S4 method for signature 'TwoGroupStats'
as.data.frame(x, row.names=NULL, optional=FALSE)
S4 method for signature 'TwoGroupStats'
summary(object, ...)
S4 method for signature 'TwoGroupStats'
print(x, ...)
S4 method for signature 'TwoGroupStats'
show(object)
S4 method for signature 'TwoGroupStats,missing'
plot(x, main=x@name, useLog=FALSE, ...)

Arguments

data Either a data frame or matrix with numeric values or an ExpressionSet as defined in the BioConductor tools for analyzing microarray data.
classes If data is a data frame or matrix, then classes must be either a logical vector or a factor. If data is an ExpressionSet, then classes can be a character string that names one of the factor columns in the associated phenoData subobject.
name A character string; the name of this object
name1 A character string; the name of the first group
name2 A character string; the name of the second group
x A TwoGroupStats object
row.names See the base version of as.data.frame.default
optional See the base version of as.data.frame.default
object A TwoGroupStats object
main Plot title
useLog a logical flag; should the values be log-transformed before plotting?
... The usual extra arguments to generic functions
Details

This class was one of the earliest developments in our suite of tools to analyze microarrays. Its main purpose is to segregate out the preliminary computation of summary statistics on a row-by-row basis, along with a set of plots that could be generated automatically and used for quality control.

Creating Objects

Although objects of the class can be created by a direct call to `new`, the preferred method is to use the `TwoGroupStats` generator. The inputs to this function are the same as those used for row-by-row statistical tests throughout the ClassComparison package; a detailed description can be found in the `MultiTtest` class.

One should note that this class serves as the front end to the `SmoothTtest` class, providing it with an interface that accepts `ExpressionSet` objects compatible with the other statistical tests in the ClassComparison package.

Slots

- `mean1`: numeric vector of means in the first group
- `mean2`: numeric vector of means in the second group
- `overallMean`: numeric vector of overall row means
- `var1`: numeric vector of variances in the first group
- `var2`: numeric vector of variances in the second group
- `overallVar`: numeric vector of variances assuming the two groups have the same mean
- `pooledVar`: numeric vector of row-by-row pooled variances, assuming the two groups have the same variance but different means
- `n1`: numeric scalar specifying number of items in the first group
- `n2`: numeric scalar specifying number of items in the second group
- `name1`: character string specifying name of the first group
- `name2`: character string specifying name of the second group
- `name`: character string specifying name of the object

Methods

- `as.data.frame(x, row.names=NULL, optional=FALSE)`: Collect the numeric vectors from the object into a single data frame, suitable for printing or exporting.
- `summary(object, ...)`: Write out a summary of the object.
- `print(x, ...)`: Print the object. (Actually, it only prints a summary, since the whole object is almost always more than you really want to see. If you insist on printing everything, use `as.data.frame`.)
- `show(object)`: Print the object (same as print method.).
- `plot(x, main=x@name, useLog=FALSE, ...)`: This function actually produces six different plots of the data, so it is usually wrapped by a graphical layout command like `par(mfrow=c(2, 3))`. The first two plots show the relation between the mean and standard deviation for the two groups separately; the third plot does the same for the overall mean and variance. The fourth plot is a Bland-Altman plot of the difference between the means against the overall mean. (In the microarray world, this is usually called an M-vs-A plot.) A loess fit is overlaid on the scatter plot, and points outside confidence bounds based on the fit are printed in a different
color to flag them as highly variable. The fifth plot shows a loess fit (with confidence bounds) of the difference as a function of the row index (which often is related to the geometric position of spots on a microarray). Thus, this plot gives a possible indication of regions of an array where unusual things happen. The final plot compares the overall variances to the pooled variances.

Author(s)
Kevin R. Coombes <krc@silicovore.com>

References

See Also
MultiTtest, SmoothTtest

Examples
showClass("TwoGroupStats")
bogus <- matrix(rnorm(30*1000, 8, 3), ncol=30, nrow=1000)
splitter <- rep(FALSE, 30)
splitter[16:30] <- TRUE
x <- TwoGroupStats(bogus, splitter)
summary(x)

opar<-par(mfrow=c(2,3), pch=".")
plot(x)
par(opar)

variantT

Classes for Variant T-tests

Description
Classes to perform row-by-row paired or unequal variance t-tests on microarray or proteomics data.

Usage
MultiTtestPaired(data, classes, pairing)
MultiTtestUnequal(data, classes)
S4 method for signature 'MultiTtestPaired'
summary(object, ...)
S4 method for signature 'MultiTtestUnequal'
summary(object, ...)
variantT

Arguments

- **data**: Either a data frame or matrix with numeric values or an `ExpressionSet` as defined in the BioConductor tools for analyzing microarray data.

- **classes**: If `data` is a data frame or matrix, then `classes` must be either a logical vector or a factor. If `data` is an `ExpressionSet`, then `classes` can be a character string that names one of the factor columns in the associated `phenoData` subobject.

- **pairing**: A numerical vector indicating which samples are paired.

- **object**: A `MultiTtest` object

- ... Unused; optional extra parameters for `summary`.

Creating objects

Although objects can be created using `new`, the better method is to use the `MultiTtestPaired` or `MultiTtestUnequal` functions. In the simplest case, you simply pass in a data matrix and a logical vector assigning classes to the columns (and, in the case of a paired t-test, a numeric vector describing the pairing), and the constructor performs row-by-row two-sample t-tests and computes the associated (single test) p-values. To adjust for multiple testing, you can pass the p-values on to the `Bum` class.

If you use a factor instead of a logical vector, then the t-test compares the first level of the factor to everything else. To handle the case of multiple classes, see the `MultiLinearModel` class.

As with other class comparison functions that are part of the OOMPA, we can also perform statistical tests on `ExpressionSet` objects from the BioConductor libraries. In this case, we pass in an `ExpressionSet` object along with the name of a factor to use for splitting the data.

Extends

Both classes extend class `MultiTtest`, directly. See that class for descriptions of the inherited methods and slots.

Slots

- **df**: The `MultiTtestUnequal` class adds a slot to record e gene-by-gene degrees of freedom, which can change along with the variances.

Methods

- `summary` signature(object = `MultiTtestPaired`): Write out a summary of the object.

- `summary` signature(object = `MultiTtestUnequal`): Write out a summary of the object.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

OOMPA

See Also

`Bum`, `MultiTtest`
Examples

```r
showClass("MultiTtestPaired")
showClass("MultiTtestUnequal")
ng <- 10000
ns <- 50
dat <- matrix(rnorm(ng*ns), ncol=ns)
cla <- factor(rep(c("A", "B"), each=25))
res <- MultiTtestUnequal(dat, cla)
summary(res)
hist(res, breaks=101)
plot(res, res@p.values)

pairing <- rep(1:25, 2)
res <- MultiTtestPaired(dat, cla, pairing)
summary(res)
plot(res)
hist(res@p.values, breaks=101)
```
Index

*Topic classes
 Bum-class, 2
 BumSummary-class, 5
 Dudoit-class, 6
 MultiLinearModel-class, 9
 MultiTtest-class, 11
 MultiWilcoxonTest-class, 13
 Sam-class, 17
 SamSummary-class, 20
 SingleGroup-class, 21
 SmoothTtest-class, 24
 TNoM-class, 26
 TNoMSummary-class, 29
 TwoGroupStats-class, 30
 variantT, 32

*Topic distribution
dwil, 8

*Topic hplot
 TwoGroupStats-class, 30

*Topic htest
 Bum-class, 2
 Dudoit-class, 6
 MultiLinearModel-class, 9
 MultiTtest-class, 11
 MultiWilcoxonTest-class, 13
 rankSum, 16
 significant, 20
 SmoothTtest-class, 24
 TNoM-class, 26
 variantT, 32

*Topic loess
 SingleGroup-class, 21

*Topic methods
 significant, 20

*Topic multivariate
 Bum-class, 2
 Dudoit-class, 6
 MultiLinearModel-class, 9
 MultiTtest-class, 11
 MultiWilcoxonTest-class, 13
 SmoothTtest-class, 24
 TNoM-class, 26
 variantT, 32

*Topic univar
 TwoGroupStats-class, 30
 anova, 11
 anova, MultiLinearModel-method (MultiLinearModel-class), 9
 apply, 11
 as.data.frame, MultiTtest-method (MultiTtest-class), 11
 as.data.frame, SingleGroup-method (SingleGroup-class), 21
 as.data.frame, SmoothTtest-method (SmoothTtest-class), 24
 as.data.frame, TwoGroupStats-method (TwoGroupStats-class), 30
 as.data.frame.default, 22, 24, 30

Bum, 5, 7, 10–13, 16, 19, 25, 26, 29, 33
Bum (Bum-class), 2
Bum-class, 2
BumSummary, 3, 4
BumSummary (BumSummary-class), 5
BumSummary-class, 5

ColorCoding, 22, 24
countSignificant (significant), 20
countSignificant, ANY-method (significant), 20
countSignificant, Bum-method (Bum-class), 2
cutoffSignificant, Dudoit-method (Dudoit-class), 6
cutoffSignificant, MultiWilcoxonTest-method (MultiWilcoxonTest-class), 13
cutoffSignificant, Sam-method (Sam-class), 17
cutoffSignificant, TNoM-method (TNoM-class), 26
cutoffSignificant-method (significant), 20
cutoffSignificant, ANY-method (significant), 20
cutoffSignificant, Bum-method (Bum-class), 2

cutoffSignificant, Dudoit-method (Dudoit-class), 6

cutoffSignificant, MultiWilcoxonTest-method (MultiWilcoxonTest-class), 13
cutoffSignificant-method (significant), 20

Dudoit, 13
Dudoit (Dudoit-class), 6
Dudoit-class, 6
dwil, 8, 16, 17

ExpressionSet, 6, 9, 12, 14, 17, 18, 27, 30, 31, 33

for, 11

formula, 10

fullTNoM-class (TNoM-class), 26

hist, Bum-method (Bum-class), 2
hist, fullTNoM-method (TNoM-class), 26
hist, MultiLinearModel-method (MultiLinearModel-class), 9
hist, MultiTtest-method (MultiTtest-class), 11
hist, MultiWilcoxonTest-method (MultiWilcoxonTest-class), 13

image, Bum-method (Bum-class), 2

likelihoodBum (Bum-class), 2

lm, 10, 11
loess, 22, 25

matrixT, 13
model.matrix, 11
MultiLinearModel, 4, 12, 13, 33
MultiLinearModel (MultiLinearModel-class), 9
MultiLinearModel-class, 9
MultiTtest, 4, 7, 11, 15, 16, 19, 26, 29, 32, 33
MultiTtest (MultiTtest-class), 11
MultiTtest-class, 11
MultiTtestPaired (variantT), 32
MultiTtestPaired-class (variantT), 32
MultiTtestUnequal (variantT), 32
MultiTtestUnequal-class (variantT), 32
multiTukey (MultiLinearModel-class), 9
MultiWilcoxonTest, 9, 11, 17, 29
MultiWilcoxonTest (MultiWilcoxonTest-class), 13
MultiWilcoxonTest-class, 13

new, 28, 31

oompaColor$BAD.REPLICATE, 23, 26
oompaColor$BORING, 23, 26
oompaColor$CENTRAL.LINE, 19, 23, 26
oompaColor$CONFIDENCE.CURVE, 19, 23, 26
oompaColor$EXPECTED, 3, 15, 28
oompaColor$FOLD.DIFFERENCE, 26
oompaColor$OBSERVED, 3, 15, 28
oompaColor$PERMTEST, 28
oompaColor$SIGNIFICANT, 26
oompaColor$WORST.REPLICATE, 23, 26

phenoData, 6, 10, 12, 14, 17, 27, 30, 33
plot, Dudoit, missing-method (Dudoit-class), 6
plot, fullTNoM, missing-method (TNoM-class), 26
plot, MultiLinearModel, ANY-method (MultiLinearModel-class), 9
plot, MultiLinearModel, missing-method (MultiLinearModel-class), 9
plot, MultiTtest, ANY-method (MultiTtest-class), 11
plot, MultiTtest, missing-method (MultiTtest-class), 11
plot, MultiWilcoxonTest, missing-method (MultiWilcoxonTest-class), 13
plot, Sam, missing-method (Sam-class), 17
plot, SingleGroup, missing-method (SingleGroup-class), 21
plot, SmoothTtest, missing-method (SmoothTtest-class), 24
plot, TwoGroupStats, missing-method (TwoGroupStats-class), 30
print, SingleGroup-method (SingleGroup-class), 21
print, TwoGroupStats-method (TwoGroupStats-class), 30

rankSum, 16, 16

Sam, 20
Sam (Sam-class), 17
Sam-class, 17
SamSummary, 18
SamSummary (SamSummary-class), 20
SamSummary-class, 20
selectSignificant (significant), 20
selectSignificant, ANY-method (significant), 20
selectSignificant, Bum-method (Bum-class), 2
selectSignificant, Dudoit-method (Dudoit-class), 6
selectSignificant, MultiWilcoxonTest-method (MultiWilcoxonTest-class), 13
selectSignificant, Sam-method (Sam-class), 17
selectSignificant, TNoM-method (TNoM-class), 26
selectSignificant-method (significant), 20
show, BumSummary-method (BumSummary-class), 5
show, SamSummary-method (SamSummary-class), 20
show, SingleGroup-method (SingleGroup-class), 21
show, TNoMSummary-method (TNoMSummary-class), 29
show, TwoGroupStats-method (TwoGroupStats-class), 30
significant, 20
SingleGroup, 24, 26
SingleGroup (SingleGroup-class), 21
SmoothTTest, 7, 21–23, 31, 32
SmoothTTest (SmoothTtest-class), 24
SmoothTTest-class, 24
summary, Bum-method (Bum-class), 2
summary, MultiLinearModel-method (MultiLinearModel-class), 9
summary, MultiTtest-method (MultiTtest-class), 11
summary, MultiTtestPaired-method (variantT), 32
summary, MultiTtestUnequal-method (variantT), 32
summary, MultiWilcoxonTest-method (MultiWilcoxonTest-class), 13
summary, Sam-method (Sam-class), 17
summary, SingleGroup-method (SingleGroup-class), 21
summary, SmoothTtest-method (SmoothTtest-class), 24
summary, TNoM-method (TNoM-class), 26
summary, TwoGroupStats-method (TwoGroupStats-class), 30

TNoM, 30
TNoM (TNoM-class), 26
TNoM-class, 26
TNoMSummary, 27
TNoMSummary (TNoMSummary-class), 29
TNoMSummary-class, 29