1 Introduction

OOMPA is a suite of object-oriented tools for processing and analyzing large biological data sets, such as those arising from mRNA expression microarrays or mass spectrometry proteomics.

This vignette documents the base package, `oompaBase`. A critical (but invisible to the user) feature of the `oompaBase` package is that it defines a class union allowing you to use “numeric” or “NULL” objects in the design of an S4 class. More interesting user-visible features include alternative color schemes and vectorized matrix operations to speed the computation of row-by-row means, variances, and t-tests.

2 Getting Started

You invoke the package in the usual way:

```r
> library(oompaBase)
```
3 Color Schemes

To illustrate the various color schemes, we first create a structured matrix:

```r
> mat <- matrix(1:1024, ncol=1)
```

The following code is used to generate Figure 1.

```r
> # windows(width=6,height=8)
> opar <- par(mfrow=c(6, 1), mai=c(0.3, 0.5, 0.2, 0.2))
> image(mat, col=redgreen(64), main='redgreen')
> image(mat, col=jetColors(128), main='jetColors')
> image(mat, col=blueyellow(32), main='blueyellow')
> image(mat, col=redscale(64), main='redscale')
> image(mat, col=bluescale(64), main='bluescale')
> image(mat, col=greyscale(64), main='greyscale')
> par(opar)
```

4 Row-by-row Matrix Operations

We now want to illustrate the “matrix operations” that allow for rapid computation of row-by-row means, variances, and t-tests.

We start by creating a slightly more interesting matrix full of random data. First, we make the variance larger in the second half (by column) of the data than in the first half.

```r
> ng <- 10000
> ns <- 50
> dat <- matrix(rnorm(ng*ns, 0, rep(c(1, 2), each=25)), ncol=ns, byrow=TRUE)
```

Next, we shift the mean for the first 500 “genes” (rows).

```r
```

In order to compute t-tests, we also assign arbitrary labels separating the “sample columns” into two groups.

```r
> clas <- factor(rep(c('Good', 'Bad'), each=25))
```

Here we compute the row-by-row means.

```r
> a0 <- proc.time()
> myMean <- matrixMean(dat)
> used0 <- proc.time() - a0
```

For comparison purposes, we perform the same computation using `apply`.

```r
> a1 <- proc.time()
> mm <- apply(dat, 1, mean)
> used1 <- proc.time() - a1
```
Figure 1: Five color schemes.
The results are the same, to within round-off error.

```r
> summary(as.vector(myMean-mm))

          Min. 1st Qu.  Median     Mean 3rd Qu.    Max.
-8.882e-16 -2.776e-17  0.000e+00 -1.453e-18  2.776e-17  6.661e-16
```

There is a measurable (although not really user-perceptible) difference in the time for the two methods.

```r
> used0

         user  system elapsed
       0.00    0.00    0.02

> used1

         user  system elapsed
       0.23    0.01    0.25
```

Here we compute the variances using two different methods.

```r
> a0 <- proc.time()
> myVar <- matrixVar(dat, myMean)
> a1 <- proc.time()
> vv <- apply(dat, 1, var)
> a2 <- proc.time()
```

Again, the values are the same:

```r
> summary(as.vector(myVar - vv))

          Min. 1st Qu.  Median     Mean 3rd Qu.    Max.
-3.997e-15 -4.441e-16  0.000e+00  9.626e-18  4.441e-16  3.553e-15
```

However, the time savings is substantially larger.

```r
> a1 - a0

         user  system elapsed
       0.01    0.00    0.01

> a2 - a1

         user  system elapsed
       0.44    0.01    0.46
```

Not surprisingly, there is an even bigger time savings when computing (equal variance) t-statistics.
> t0 <- proc.time()
> myT <- matrixT(dat, clas)
> t1 <- proc.time()
> tt <- sapply(1:nrow(dat), function(i) {
+ t.test(dat[i, clas=='Bad'], dat[i, clas=='Good'], var.equal=T)$statistic
+ })
> t2 <- proc.time()

> summary(as.vector(tt - myT))

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -7.105e-15 -1.110e-16 0.000e+00 -1.077e-18 1.110e-16 5.329e-15

> t1 - t0

 user system elapsed
 0.06 0.00 0.06

> t2 - t1

 user system elapsed
 4.7 0.0 4.7

5 Color Coded Graphs

We frequently find ourselves producing multiple figures with a common color scheme, where each color or each symbol is used to denote samples or genes with a particular property (in the simplest case, “cancer” versus “normal”). Because we got tired of continually cutting and pasting `plot` and `points` commands and making sure the color legends stayed synchronized, we developed the `ColorCoding` and `ColorCodedPair` classes to encapsulate this notion.

We can simulate some data as an example.

> x <- matrix(rnorm(100*3), nrow=100, ncol=3)
> class1 <- class2 <- rep(FALSE, 100)
> class1[sample(100, 20)] <- TRUE
> class2[sample(100, 20)] <- TRUE
> class3 <- !(class1 | class2)
> codes <- list(ColorCoding(class1, "red", 16),
+ ColorCoding(class2, "blue", 15),
+ ColorCoding(class3, "black", 17))
> par(mfrow=c(2,1))
> plot(ColorCodedPair(x[,1], x[,2], codes), xlab="Coord1", ylab="Coord2")
> plot(ColorCodedPair(x[,1], x[,3], codes), xlab="Coord1", ylab="Coord3")
> par(mfrow=c(1,1))

Figure 2: Color coded plots of three (simulated) related variables.